Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycoses ; 67(1): e13680, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214420

RESUMO

CIITA, a member of NOD-like receptor (NLR) family, is the major MHC II trans-activator and mediator of Th1 immunity, but its function and interaction with NLRP3 have been little studied. We found activation of NLRP3 inflammasome, increased expression of CIITA, CBP, pSTAT1, STAT1, MHC II, IFN-γ and IFN-γ-inducible chemokines (CCL1 and CXCL8), and colocalisation of NLRP3 with CIITA in Malassezia folliculitis lesions, Malassezia globosa-infected HaCaT cells and mouse skin. CoIP with anti-CIITA or anti-NLRP3 antibody pulled down NLRP3 or both CIITA and ASC. NLRP3 silencing or knockout caused CIITA downexpression and their colocalisation disappearance in HaCaT cells and mouse skin of Nlrp3-/- mice, while CIITA knockdown had no effect on NLRP3, ASC, IL-1ß and IL-18 expression. NLRP3 inflammasome inhibitors and knockdown significantly suppressed IFN-γ, CCL1, CXCL8 and CXCL10 levels in M. globosa-infected HaCaT cells. CCL1 and CXCL8 expression was elevated in Malassezia folliculitis lesions and reduced in Nlrp3-/- mice. These results demonstrate that M. globosa can activate NLRP3 inflammasome, CIITA/MHC II signalling and IFN-γ-inducible chemokines in human keratinocytes and mouse skin. NLRP3 may regulate CIITA by their binding and trigger Th1 immunity by secreting CCL1 and CXCL8/IL-8, contributing to the pathogenesis of Malassezia-associated skin diseases.


Assuntos
Quimiocinas C , Foliculite , Malassezia , Humanos , Camundongos , Animais , Interferon gama , Interferons , Antígenos de Histocompatibilidade Classe II/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos , Regiões Promotoras Genéticas , Transativadores/genética , Transativadores/metabolismo , Quimiocinas/genética , Queratinócitos
2.
AME Case Rep ; 7: 47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942043

RESUMO

Background: Gangliocytoma is an uncommon disease. In this report, we report a patient who was admitted to the hospital with a mediastinal tumor which is giant rarely. Case Description: A 30-year-old male patient was found to have a mediastinal mass 2 weeks ago during a routine examination. The patient occasionally had chest pain before 1 month. Computed tomography of the chest showed a mass occupying the posterior mediastinum and located anterior to the spine, above the diaphragm. The mass is removed by thoracoscopic surgery. In the surgical field of view, the tumor was loosely adhered to the surrounding organs and was freed by blunt-sharp combination Histologically confirmed mediastinal gangliocytoma with a size of 9.5 cm × 6.0 cm × 3.0 cm. The surgery was successful, and the patient's symptoms were completely relieved after the surgery. The patient underwent chest X-ray review at the 6th month after discharge, and no recurrence was found. Conclusions: Gangliocytomas are rare tumors of the peripheral nervous system. However, most of these tumors are retroperitoneal and are more common in children and young adults. Ganglioneuromas arise from neural crest cells. Most of these tumors are asymptomatic, but some may develop high blood pressure and flushing. Surgery is the best way to treat such tumors, and attention should be paid to protecting the normal tissue around the tumor during surgery to prevent postoperative complications.

3.
Appl Opt ; 62(12): 3142-3148, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37133162

RESUMO

The snapshot imaging polarimeters (SIPs) using spatial modulation have gained increasing popularity due to their capability of obtaining all four Stokes parameters in a single measurement. However, the existing reference beam calibration techniques cannot extract the modulation phase factors of the spatially modulated system. In this paper, a calibration technique based on a phase-shift interference (PSI) theory is proposed to address this issue. The proposed technique can accurately extract and demodulate the modulation phase factors through measuring the reference object at different polarization analyzer orientations and performing a PSI algorithm. Using the snapshot imaging polarimeter with modified Savart polariscopes as an example, the basic principle of the proposed technique is analyzed in detail. Subsequently, the feasibility of this calibration technique was demonstrated by a numerical simulation and a laboratory experiment. This work provides a different perspective for the calibration of a spatially modulated snapshot imaging polarimeter.

5.
J Hazard Mater ; 442: 130024, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155298

RESUMO

The problem of global water pollution and scarcity of water resources is becoming increasingly serious. Multifunctional perovskites can well drive adsorption and photocatalytic reactions to remove water pollutants. There are many advantages of perovskites, such as abundant oxygen vacancies, easily tunable structural morphology, stable crystal state, highly active metal sites, and a wide photo response range. However, there are few reviews on the simultaneous application of perovskite to adsorption and photocatalytic removal of water pollutants. Thus, this paper discusses the preparation methods of perovskite, the factors affecting the adsorption of water environmental pollutants by perovskite, and the factors affecting perovskite photocatalytic water pollutants. The particle size, specific surface area, oxygen vacancies, electron-hole trapping agents, potentials of the valence band, and conduction band in perovskites are significant influencing factors for adsorption and photocatalysis. Strategies for improving the performance of perovskites in the fields of adsorption and photocatalysis are discussed. The adsorption behaviors and catalytic mechanisms are also investigated, including adsorption kinetics and thermodynamics, electrostatic interaction, ion exchange, chemical bonding, and photocatalytic mechanism. It summarizes the removal of water pollutants by using perovskites. It provides the design of perovskites as high-efficiency adsorbents and catalysts for developing new technologies.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poluentes da Água , Adsorção , Poluentes Químicos da Água/química , Água , Oxigênio , Águas Residuárias/química
6.
Appl Opt ; 61(21): 6349-6355, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256250

RESUMO

The snapshot imaging polarimeter (SIP) using spatial modulation can obtain all the Stokes parameters of the target through a single measurement. During demodulating of the polarization information of the target, the reference light calibration method is generally used, including a bandpass filter. In this work, a method to demodulate the target polarization information is proposed, which is based on the coherence demodulation theory. Additionally, this method includes a multiplier and a low-pass filter. Taking a spatially modulated SIP using modified Savart polariscopes as an example, a detailed theoretical analysis of the method is derived, and the computer simulation and experiments are carried out to verify the method's feasibility. To the best of our knowledge, this work provides a novel method for demodulating polarization information of spatially modulated SIPs.

8.
Environ Res ; 204(Pt D): 112381, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34801541

RESUMO

Anion pollution in water has become a problem that cannot be ignored. The anion concentration should be controlled below the national emission standard to meet the demand for clean water. Among the methods for removing excess anions in water, the adsorption method has a unique removal performance, and the core of the adsorption method is the adsorbent. In recent years, the emerging metal-organic frameworks (MOFs) have the advantages of adjustable porosity, high specific surface area, diverse functions, and easy modification. They are very competitive in the field of adsorption of liquid anions. This article focuses on the adsorption of fluoride, arsenate, chromate, radioactive anions (ReO4-, TcO4-, SeO42-/SeO32-), phosphate ion, chloride ion, and other anions by MOFs and their derivatives. The preparation methods of MOFs are introduced in turn, the application of different types of metal-based MOFs to adsorb various anions were discussed in categories with their crystal structure and functional groups. The influence on the adsorption of anions is analyzed, including the more common and special adsorption mechanisms, adsorption kinetics and thermodynamics, and regeneration performance are briefly described. Finally, the current situation of MOFs adsorption of anions is summarized, and the outlook for future development is summarized to provide my own opinions for the practical application of MOFs.


Assuntos
Estruturas Metalorgânicas , Purificação da Água , Adsorção , Ânions , Água
9.
Front Microbiol ; 12: 746293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733260

RESUMO

The discharge of excess nitrogenous pollutants in rivers or other water bodies often leads to serious ecological problems and results in the collapse of aquatic ecosystems. Nitrogenous pollutants are often derived from the inefficient treatment of industrial wastewater. The biological treatment of industrial wastewater for the removal of nitrogen pollution is a green and efficient strategy. In the initial stage of the nitrogen removal process, the nitrogenous pollutants are converted to ammonia. Traditionally, nitrification and denitrification processes have been used for nitrogen removal in industrial wastewater; while currently, more efficient processes, such as simultaneous nitrification-denitrification, partial nitrification-anammox, and partial denitrification-anammox processes, are used. The microorganisms participating in nitrogen pollutant removal processes are diverse, but information about them is limited. In this review, we summarize the microbiota participating in nitrogen removal processes, their pathways, and associated functional genes. We have also discussed the design of efficient industrial wastewater treatment processes for the removal of nitrogenous pollutants and the application of microbiome engineering technology and synthetic biology strategies in the modulation of the nitrogen removal process. This review thus provides insights that would help in improving the efficiency of nitrogen pollutant removal from industrial wastewater.

10.
China CDC Wkly ; 3(27): 569-575, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34594938

RESUMO

What is already known about this topic? The coronavirus disease 2019 (COVID-19) vaccine development has been progressing, but acceptance of the new vaccines by healthcare workers (HCWs) was not well known prior to approval of COVID-19 vaccines in China. What is added by this report? This study found that before vaccine approval, Beijing HCWs expressed moderate willingness to get vaccinated. Factors positively influencing willingness included free vaccination and belief that the vaccine had been fully evaluated. A negatively influencing factor was presence of an underlying disease. Trust in vaccines, in general, was positively associated with willingness to get new vaccines. What are the implications for public health practice? COVID-19 vaccines should be provided at no cost to HCWs. Effective measures should be taken to enhance the acceptance of COVID-19 vaccination among HCWs in China.

11.
Chemosphere ; 285: 131525, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34265703

RESUMO

Arsenic (As) is a problematic pollutant that can cause cancer and other chronic diseases due to its potential toxicity. Iron (oxyhydr)oxides can readily sorb As and play important roles in the geochemical cycle of As. Attention has mainly been given to the affinity and mechanism of As sorption by synthetic pure iron (oxyhydr)oxides, and little is known about the relationship between As behavior and multicomponent secondary iron minerals (SIMs) naturally formed in acid mine drainage (AMD). To investigate this relationship, we performed sorption kinetics, isotherm and competitive sorption experiments to investigate As(V) sorption behaviors on naturally formed SIMs harvested from different runoff zones of an abandoned coal mine. Several spectroscopic analyses were used to evaluate the structural and component changes and phase transformation. Three environmental SIMs formed at nascent (n-SIM), transient (t-SIM) and mature (m-SIM) stages were determined to be similar in the element components of Fe, S and O but different in structure. As(V) sorption behaviors on these environmental SIMs followed a pseudo-second-order kinetic model, and the sorption extent followed the sequence of n-SIM > t-SIM > m-SIM. As(V) sorption is not significantly influenced by Na+/Ca2+ concentration or ionic strength except for that of PO43-, and it slightly decreases as the Cr(Ⅲ) concentration increases but increases with increasing Sb(Ⅲ)/(V) concentration. The results of spectral analyses indicate that As(V) immobilization mainly depends on exchange with SO42- and surface complexation, along with the phase transformation of schwertmannite/jarosite to goethite and other phases. These findings are helpful for better understanding the geochemical behaviors of As(V) associated with environmental SIMs.


Assuntos
Arsênio , Compostos de Ferro , Adsorção , Arseniatos , Compostos Férricos , Ferro , Minerais
12.
Bull Environ Contam Toxicol ; 107(4): 585-596, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33779775

RESUMO

Microplastics are abundant in the environment and have been proven to affect ecosystems and human health. Microorganisms play essential roles in the ecological fate of microplastics pollution, potentially yielding positive and negative effects. This study reviews the research progress of interaction between microplastics and microorganisms based on a bibliometric and visualized analysis. Publication numbers, subjects, countries, institutions, highly cited papers, and keywords were investigated by statistical analysis. VOSviewer software was applied to visualize the co-occurrence and aggregation of national collaboration, subjects, and keywords. Results revealed trends of rapidly increasing publication output that involved multiple disciplines. Contributing countries and their institutions were also identified in this study. Keywords, co-occurrence network visualization, highly cited papers analysis, and knowledge-based mining were all used to give insight into microorganisms or microbiota related to microplastics pollution, and the potential impacts that microplastics biodegradation may cause. In the future, research efforts need to focus on the following areas: microbial degradation processes and mechanisms, assessment of ecological microplastics risks, and potential effects of microplastics bioaccumulation and human exposure. This study provides a holistic view of ongoing microplastics and related microbial research, which may be useful for future microplastics biodegradation studies.


Assuntos
Microbiota , Microplásticos , Bibliometria , Biodegradação Ambiental , Humanos , Plásticos
13.
Sci Total Environ ; 768: 145050, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33453529

RESUMO

Fly ash from municipal solid waste incineration (MSWI) enriches many leachable toxic metals which readily migrate into the environment, posing serious risks to the ecosystem and human. In this study, the elements mobility, leaching availability as well as the potential maximum amounts of heavy metals in fly ash were thoroughly evaluated. To decontaminate the toxic elements from resulting fly ash leachates, The aqueous zinc (Zn) was recovered using Cyanex 572, cadmium (Cd) and copper (Cu) were effectively removed through adsorption process by a self-assembled hierarchical hydroxyapatite (HAP) nanostructure. The removal mechanism of Cd, Cu and Zn by leaching, extraction and adsorption was revealed with the results from XRD, ICP-MS and SEM. The results showed that fly ash has a high mobility under maximum availability leaching test (95% of fly ash was dissolved), a recovery rate of 91% for Zn can be obtained using Cyanex 572, and a high adsorption rate (> 95% for both Cu and Cd) was reached using HAP for the pristine fly ash leachate. The outcomes from isothermal and kinetic study revealed that Langmuir isotherm and pseudo-second order model can well describe the Cd and Cu adsorption behavior. Economic assessment suggested that the application of HAP for the removal of Cd and Cu is a technically sound and economically feasible approach. The findings of this study demonstrated that this comprehensive process integrated leaching, solvent extraction and consequential decontamination can be a practical strategy for MSWI fly ash treatment.

14.
Chemosphere ; 266: 129129, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33310360

RESUMO

The continuous production of plant wastes and heavy metal pollution of waters have become widespread unavoidable challenges. Reutilization of plant wastes to treat toxic metal-contaminated water is an eco-friendly way to simultaneously solve these problems. Herein, three cake-like biosorbents were synthesized from tea waste, trimmed lawn grass and Nephrolepis cordifolia leaves through a one-step xanthation modification method combined with lyophilization, respectively. The plant species affected the appearance, structure and mechanical strength of the biosorbents due to the different contents of hydrocarbons and inorganic substances, which influenced the gel-like degree and thus the ability of the particles to pack between water molecules. The maximum adsorption capacities of the modified materials for Pb(II), Cu(II) and Cd(II) were 247.20, 85.80 and 265.31 mg/g, respectively, far higher than those of the original wastes, and the adsorption was selective. These results were mainly attributed to newly introduced -(CS)-S-Na groups, which triggered ion exchange, complexation and microprecipitation between heavy metal ions and functional groups. As-prepared biosorbents owned an excellent regenerability, which contributed to recovery heavy metals. The physicochemical properties and adsorption performances of the modified materials indicated that xanthation is a universal modification method suited to different plant biomasses with great potential to purify heavy metal-contaminated water. These biosorbents with excellent separability and regenerability might be promising for continuous-flow sewage treatment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Biomassa , Íons , Folhas de Planta
15.
Ecotoxicol Environ Saf ; 209: 111802, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360784

RESUMO

As the antibiotic pollution source in the environment, a large amount of biowastes generated from antibiotic fermentation manufacture needs proper disposal. Recycling the biowaste as resources and nutrients is of great interest. Besides, degradation or removal of antibiotics is indispensable for the reclamation of antibiotic manufacturing biowaste. To establish environmentally friendly disposal strategies for lincomycin manufacturing biowaste (LMB), we screened the microbial strains that could efficiently degrade lincomycin from the antibiotic wastewater treatment plant. Among them, three novel strains were identified as Bacillus subtilis (strain LMB-A), Rhodotorula mucilaginosa (strain LMB-D) and Penicillium oxalicum (strain LMB-E), respectively. LMB-A and LMB-D could degrade 92.69% and 74.05% of lincomycin with an initial concentration of 1117.55 mg/L in 144 h, respectively. The lincomycin degradation products were formed by the breakage of amide bond or losing N-demethyl/thiomethyl group from the pyrrolidine/pyranose ringcata cata catalyzed by the strains. Moreover, LMB-A could decontaminate LMB, and the decontaminated LMB could be used as a nitrogen source to culture salt-resistant bacteria and other useful microorganisms. LMB-A and LMB-D have the potential to be used for the bioremediation of water and soil polluted by lincomycin and its analogs. LMB-E could degrade 88.20% LMB after 144-h cultivation. In summary, this study gives an insight into the green disposal of LMB, and the established strategy has potential application for biotreatment of other antibiotic fermentation manufacturing biowastes.


Assuntos
Antibacterianos/metabolismo , Biodegradação Ambiental , Lincomicina/metabolismo , Bactérias/metabolismo , Fermentação , Penicillium/metabolismo , Rhodotorula , Solo
16.
Ecotoxicol Environ Saf ; 204: 111112, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798756

RESUMO

Compared with conventional methods for organic pollutant degradation, photocatalysis is a promising treatment technology with broad application prospects. Bi2O2CO3 is often used for organic pollutants degradation but greatly restricted by having drawbacks of large band gap and high electron-hole recombination rate. Herein, heterostructured Bi2O2CO3 (BOC)/reduced graphene oxide (rGO)/polydopamine (PDA) (BGP) photocatalysts were first designed through a green chemical method. By incorporating rGO and PDA in BOC, the kinetic constant of BGP to catalytically degrade methyl orange (MO) was significantly increased; over fourfold elevated rather than that of BOC (kapp/BOC = 0.0019, kapp/BGP = 0.0089) due to the high electron transfer capability of rGO and superior adhesive force and semiconducting properties of PDA. DRS and photoelectrochemical results confirmed the improvement of the light absorption range and charge transfer capability because of the synergistic effect of rGO and PDA. Results of trapping experiment and ESR unraveled the catalytic mechanism that both holes (h+) and superoxide radicals (•O2-) were the main oxidative species for MO degradation. Economic assessment results demonstrated that Bi2O2CO3/rGO/PDA heterojunctions have great potentials in the field of organic wastewater purification. This study developed a low-cost and highly efficient BGP material and provided a deep understanding of the structure-performance relationships of materials for organic pollutant degradation.


Assuntos
Processos Fotoquímicos , Eliminação de Resíduos Líquidos/métodos , Compostos Azo , Catálise , Poluentes Ambientais , Grafite , Química Verde , Indóis , Oxirredução , Polímeros , Águas Residuárias
17.
Sci Total Environ ; 728: 138809, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32570311

RESUMO

Municipal solid waste incineration (MSWI) fly ash generally contains substantial toxic elements which can be easily released into the environment, giving rise to serious environmental contaminations. In order to dispose of these harmful fly ashes safely and feasibly, an advanced and reliable strategy is needed. This work presented an integrated method designed for recycling of valuable copper (Cu) and zinc (Zn) through hydrochloric acid leaching and sequential extraction (using LIX 860N-I and Cyanex 572 for Cu and Zn as extractants, respectively) and clean-up of cadmium (Cd) and lead (Pb) in consequential waste effluent by adsorption with a versatile material - bundle-like hydroxyapatite (B-HAP). The method was applied in the pilot scale tests with recovery yields of 95% and 61% for Cu and Zn, respectively. Additionally, satisfied removal efficiencies of Cd and Pb (over 95% for both) were realized, reaching the acceptable emission level for Cd and Pb in China. A scenario based on the latest MSW data in 2018 in Guangzhou was assessed through the integrated pilot experiment. The evaluation demonstrates a reduction of a $ 20.8 million cost; over 48.2 k GJ of energy consumption and 5800 tons of CO2 emission can be reduced in 2018, comparing to that landfilled in hazardous waste sites, which reveals great benefits. The valuable metal recovery in combination with decontamination of toxic elements/substances as a complete and combined process gives a promising fly ash treatment strategy in future.

18.
J Hazard Mater ; 394: 122550, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32299040

RESUMO

The exploration of emergency materials with ultra-fast adsorption rate and great adsorption capability of released U(VI) ions is essentially urgent. The present work successfully fabricated bundle-like hydroxyapatite (B-HAP) microstructures which composed of numerous nanorods by employing a facile and green method. The B-HAP was applied to treat the U(VI) containing wastewater. The abatement of U(VI) by B-HAP was very rapid and the saturated adsorption capacity was superior; over 96.7 % of U(VI) was abated within 5 min, and the maximum adsorption capacity was as high as to 1305 mg/g, signifying the feasibility and effectiveness of this B-HAP in the treatment of uranium-contaminated wastewater due to nuclear accidents. It is worthy to note that other ions in solution exhibited relatively low interference on its performance, indicating that B-HAP has great application potential to capture U(VI) from radioactive-contaminated wastewater as well. The U(VI) removal mechanism by B-HAP was confirmed with results from XRD, FT-IR and XPS. Chernikovite [H2(UO2)2(PO4)2·8H2O] was newly formed after U(VI) abatement by B-HAP. Economic assessment suggested B-HAP and its application on U(VI) abatement were cost-effective. With characteristics of high adsorption rate, large capacity, and strong antijamming ability, B-HAP has great application potential as an emergency treatment material for nuclear accidents.

19.
Environ Pollut ; 254(Pt A): 112891, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31408794

RESUMO

The effluents from nuclear mining processes contain relatively high content of radionuclides (such as uranium), which may seriously threaten the environment and human health. Herein, a novel adsorbent, porous hydroxyapatite, was prepared and proven highly efficient for removal of uranyl ions (U(VI)) given its high U(VI) uptake capacity of 111.4 mg/g, fast adsorption kinetics, and the potential stabilization of adsorbed U(VI). A nearly complete removal of U(VI) was achieved by porous HAP under optimized conditions. Langmuir model could well describe the adsorption equilibrium. The data fit well with pseudo-second-order kinetic model, suggesting that U(VI) adsorption is primarily attributed to chemisorption with porous HAP. Intraparticle diffusion analysis showed that the intraparticle diffusion is the rate-limiting step for U(VI) adsorption by porous HAP. After removal by porous HAP, the adsorbed U(VI) ions were incorporated into tetragonal autunite, which has a low solubility (log Ksp: -48.36). Our findings demonstrate that the porous HAP can effectively remediate uranium contamination and holds great promise for environmental applications.


Assuntos
Durapatita/química , Mineração , Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Difusão , Íons , Cinética , Porosidade , Urânio/análise
20.
Waste Manag ; 87: 814-824, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109586

RESUMO

This study first examined the phase transformation in the reactive sintering systems of cadmium-laden industrial sludge and Al-Si-rich precursors with different Cd/Al/Si molar ratios under various temperatures. X-ray diffraction results indicated that the Cd started to be incorporated at 750 °C by kaolinite or mullite (calcined from kaolinite). Three hours of processing at 950 °C can effectively incorporate Cd into Cd-Al-Si or Cd-Si materials. The amount of CdO in the reactive systems had significant influences on the Cd incorporation behavior into crystalline phases. With a small amount of CdO, product phase CdAl2Si2O8 dominated in the systems. Systems with considerable CdO produced notable amounts of Cd2SiO4 and Cd3SiO5. The production of Cd2SiO4 and Cd3SiO5 from CdO + mullite was more significant than that using kaolinite due to the preferred reaction between CdO and SiO2. To assess the effect of metal stabilization, single-phase products that host Cd (namely, CdAl2Si2O8, Cd2SiO4, and Cd3SiO5) were obtained, maintained at pH 4.0, and subjected to a constant-pH leaching test (CPLT) for 120 min. CPLT results evidently indicated that these phases were remarkably resistant to substantial acid (nitric acid) attack; the leaching behavior of CdAl2Si2O8 was incongruent dissolution. Finally, cadmium can be effectively incorporated into CdAl2Si2O8, Cd2SiO4, or Cd3SiO5 by using sludge ash from a secondary sewage treatment works, suggesting that precursors enriched with Al and Si can be promising materials in a cleaner production process for treating cadmium-laden industrial sludge.


Assuntos
Cádmio , Caulim , Silicatos de Alumínio , Esgotos , Dióxido de Silício , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...